chore: remove precalculated race scores. Calculate race scores on every reload

mciea-main
rebuilt 2 years ago
parent 76ebcc6ef3
commit a1b580048b

@ -1,6 +0,0 @@
class RaceScore < ApplicationRecord
belongs_to :measure
belongs_to :school
belongs_to :academic_year
belongs_to :race
end

@ -20,6 +20,10 @@ module Analyze
@number_of_columns = number_of_columns @number_of_columns = number_of_columns
end end
def academic_year_for_year_index(year_index)
academic_years[year_index]
end
def score(year_index) def score(year_index)
measure.score(school:, academic_year: academic_years[year_index]) || 0 measure.score(school:, academic_year: academic_years[year_index]) || 0
end end

@ -1,114 +0,0 @@
class RaceScoreLoader
def self.reset(schools: School.all, academic_years: AcademicYear.all, measures: Measure.all, races: Race.all, fast_processing: true)
RaceScore.where(school: schools, academic_year: academic_years, measure: measures, race: races).delete_all
measures.each do |measure|
if fast_processing
large_memory_use(measure:, schools:, academic_years:, races:)
else
slow_loading_time(measure:, schools:, academic_years:, races:)
end
end
end
private
def self.large_memory_use(measure:, schools:, academic_years:, races:)
loadable_race_scores = schools.map do |school|
academic_years.map do |academic_year|
races.map do |race|
process_score(measure:, school:, academic_year:, race:)
end
end
end
RaceScore.import(loadable_race_scores.flatten.compact, batch_size: 1_000, on_duplicate_key_update: :all)
end
def self.slow_loading_time(measure:, schools:, academic_years:, races:)
schools.each do |school|
loadable_race_scores = academic_years.map do |academic_year|
races.map do |race|
process_score(measure:, school:, academic_year:, race:)
end
end
RaceScore.import(loadable_race_scores.flatten.compact, batch_size: 1_000, on_duplicate_key_update: :all)
@grouped_responses = nil
@response_rate = nil
@sufficient_responses = nil
end
end
def self.process_score(measure:, school:, academic_year:, race:)
score = race_score(measure:, school:, academic_year:, race:)
{ measure_id: measure.id, school_id: school.id, academic_year_id: academic_year.id, race_id: race.id, average: score.average,
meets_student_threshold: score.meets_student_threshold? }
end
def self.race_score(measure:, school:, academic_year:, race:)
rate = response_rate(school:, academic_year:, measure:)
unless rate.meets_student_threshold
return Score.new(average: 0, meets_teacher_threshold: false, meets_student_threshold: false,
meets_admin_data_threshold: false)
end
survey_items = measure.student_survey_items
averages = grouped_responses(school:, academic_year:, survey_items:, race:)
meets_student_threshold = sufficient_responses(school:, academic_year:, race:)
scorify(responses: averages, meets_student_threshold:, measure:)
end
def self.grouped_responses(school:, academic_year:, survey_items:, race:)
@grouped_responses ||= Hash.new do |memo, (school, academic_year, survey_items, race)|
memo[[school, academic_year, survey_items, race]] =
SurveyItemResponse.joins("JOIN student_races on survey_item_responses.student_id = student_races.student_id JOIN students on students.id = student_races.student_id").where(
school:, academic_year:, grade: school.grades(academic_year:)
).where("student_races.race_id": race.id).group(:survey_item_id).having("count(*) >= 10").average(:likert_score)
end
@grouped_responses[[school, academic_year, survey_items, race]]
end
def self.response_rate(school:, academic_year:, measure:)
subcategory = measure.subcategory
@response_rate ||= Hash.new do |memo, (school, academic_year, subcategory)|
memo[[school, academic_year, subcategory]] = subcategory.response_rate(school:, academic_year:)
end
@response_rate[[school, academic_year, subcategory]]
end
def self.scorify(responses:, meets_student_threshold:, measure:)
averages = bubble_up_averages(responses:, measure:)
average = averages.average
average = 0 unless meets_student_threshold
Score.new(average:, meets_teacher_threshold: false, meets_student_threshold:, meets_admin_data_threshold: false)
end
def self.sufficient_responses(school:, academic_year:, race:)
@sufficient_responses ||= Hash.new do |memo, (school, academic_year, race)|
number_of_students_for_a_racial_group = SurveyItemResponse.joins("JOIN student_races on survey_item_responses.student_id = student_races.student_id JOIN students on students.id = student_races.student_id").where(
school:, academic_year:
).where("student_races.race_id": race.id).distinct.pluck(:student_id).count
memo[[school, academic_year, race]] = number_of_students_for_a_racial_group >= 10
end
@sufficient_responses[[school, academic_year, race]]
end
def self.bubble_up_averages(responses:, measure:)
measure.student_scales.map do |scale|
scale.survey_items.map do |survey_item|
responses[survey_item.id]
end.remove_blanks.average
end.remove_blanks
end
private_class_method :process_score
private_class_method :race_score
private_class_method :grouped_responses
private_class_method :response_rate
private_class_method :scorify
private_class_method :sufficient_responses
private_class_method :bubble_up_averages
end

@ -0,0 +1,18 @@
class DropRaceScores < ActiveRecord::Migration[7.0]
def up
drop_table :race_scores
end
def down
create_table :race_scores do |t|
t.references :measure, null: false, foreign_key: true
t.references :school, null: false, foreign_key: true
t.references :academic_year, null: false, foreign_key: true
t.references :race, null: false, foreign_key: true
t.float :average
t.boolean :meets_student_threshold
t.timestamps
end
end
end
Loading…
Cancel
Save