You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sqm-dashboards/spec/views/analyze/index.html.erb_spec.rb

204 lines
6.5 KiB

require 'rails_helper'
include AnalyzeHelper
include Analyze::Graph
describe 'analyze/index' do
subject { Nokogiri::HTML(rendered) }
let(:category) { create(:category) }
let(:subcategory) { create(:subcategory, category:) }
let(:school) { create(:school) }
let(:academic_year) { create(:academic_year) }
let(:races) do
DemographicLoader.load_data(filepath: 'spec/fixtures/sample_demographics.csv')
Race.all
end
let(:graph) { StudentsAndTeachers.new }
let(:graphs) do
[StudentsAndTeachers.new, StudentsByRace.new(races:)]
end
let(:background) { BackgroundPresenter.new(num_of_columns: graph.columns.count) }
let(:selected_races) { races }
let(:support_for_teaching) do
measure = create(:measure, name: 'Support For Teaching Development & Growth', measure_id: '1A-I', subcategory:)
scale = create(:scale, measure:)
create(:student_survey_item,
scale:,
watch_low_benchmark: 1.5,
growth_low_benchmark: 2.5,
approval_low_benchmark: 3.5,
ideal_low_benchmark: 4.5)
measure
end
let(:effective_leadership) do
measure = create(:measure, name: 'Effective Leadership', measure_id: '1A-II', subcategory:)
scale = create(:scale, measure:)
create(:teacher_survey_item,
scale:,
watch_low_benchmark: 1.5,
growth_low_benchmark: 2.5,
approval_low_benchmark: 3.5,
ideal_low_benchmark: 4.5)
measure
end
let(:professional_qualifications) do
measure = create(:measure, name: 'Professional Qualifications', measure_id: '1A-III', subcategory:)
scale = create(:scale, measure:)
create(:admin_data_item,
scale:,
watch_low_benchmark: 1.5,
growth_low_benchmark: 2.5,
approval_low_benchmark: 3.5,
ideal_low_benchmark: 4.5)
measure
end
let(:sources) do
[Analyze::Source::SurveyData.new(slices:)]
end
let(:slices) do
students_and_teachers = Analyze::Slice::StudentsAndTeachers.new
students_by_group = Analyze::Slice::StudentsByGroup.new(races:, grades:)
[students_and_teachers, students_by_group]
end
let(:slice) do
slices.first
end
let(:groups) do
[Analyze::Group::Race.new, Analyze::Group::Grade.new]
end
let(:group) do
groups.first
end
let(:grades) do
(1..12).to_a
end
let(:genders) do
DemographicLoader.load_data(filepath: 'spec/fixtures/sample_demographics.csv')
Gender.all
end
let(:selected_genders) do
genders
end
let(:selected_grades) do
grades
end
before :each do
assign :races, races
assign :selected_races, selected_races
assign :graph, graph
assign :graphs, graphs
assign :background, background
assign :academic_year, academic_year
assign :available_academic_years, [academic_year]
assign :selected_academic_years, [academic_year]
assign :district, create(:district)
assign :school, school
assign :category, category
assign :categories, [category]
assign :subcategory, subcategory
assign :subcategories, category.subcategories
assign :measures, [support_for_teaching, effective_leadership, professional_qualifications]
assign :sources, sources
assign :source, sources.first
assign :groups, groups
assign :group, group
assign :slice, slice
assign :grades, grades
assign :selected_grades, selected_grades
assign :genders, genders
assign :selected_genders, selected_genders
create(:respondent, school:, academic_year:)
create(:survey, school:, academic_year:)
end
context 'when all the presenters have a nil score' do
before do
render
end
# let(:grouped_bar_column_presenters) do
# measure = create(:measure, name: 'Display Me', measure_id: 'display-me')
# scale = create(:scale, measure:)
# create(:student_survey_item,
# scale:,
# watch_low_benchmark: 1.5,
# growth_low_benchmark: 2.5,
# approval_low_benchmark: 3.5,
# ideal_low_benchmark: 4.5)
# [
# GroupedBarColumnPresenter.new(measure:,
# score: Score.new(average: rand))
# ]
# end
it 'displays a set of grouped bars for each presenter' do
displayed_variance_columns = subject.css('.grouped-bar-column')
expect(displayed_variance_columns.count).to eq 9
displayed_variance_rows = subject.css('[data-for-measure-id]')
expect(displayed_variance_rows.first.attribute('data-for-measure-id').value).to eq '1A-I'
displayed_academic_years = subject.css('[data-for-academic-year]')
expect(displayed_academic_years.count).to eq 0
displayed_variance_labels = subject.css('[data-grouped-bar-label]')
expect(displayed_variance_labels.count).to eq 18
expect(displayed_variance_labels.first.inner_text).to include 'All'
expect(displayed_variance_labels[1].inner_text).to include 'Students'
expect(displayed_variance_labels.last.inner_text).to include 'Data'
end
it 'displays all measures for the first subcategory' do
expect(rendered).to have_text '1A-I'
expect(rendered).to have_text '1A-II'
expect(rendered).to have_text '1A-III'
end
it 'displays user interface controls' do
expect(subject).to have_text 'Focus Area'
expect(subject).to have_css '#select-category'
expect(subject).to have_css '#select-subcategory'
expect(subject).to have_css "##{academic_year.range}"
end
it 'displays disabled checkboxes for years that dont have data' do
ResponseRateLoader.reset
year_checkbox = subject.css("##{academic_year.range}").first
expect(year_checkbox.name).to eq 'input'
expect(academic_year.range).to eq '2050-51'
expect(year_checkbox).to have_attribute 'disabled'
end
it 'displays a radio box selector for each type of data filter' do
expect(subject).to have_css '#students-and-teachers'
expect(subject).to have_css '#students-by-group'
end
it 'displays a checkbox for each race designation' do
race_slugs = %w[american-indian-or-alaskan-native asian-or-pacific-islander black-or-african-american
hispanic-or-latinx middle-eastern multiracial race-ethnicity-not-listed white-or-caucasian]
race_slugs.each do |slug|
expect(subject).to have_css("//input[@type='checkbox'][@id='#{slug}']")
end
end
end
context 'when presenters have a displayable score' do
before do
render
end
context 'when displaying a student and teacher graph' do
end
end
end